©NINU

Norwegian University of
Science and Technology

TFY4190 Instrumentering
October 16, 2024

Audio-reactive Discolights by FFT

Abel Gangeskar Horneland! and Thyra Rolfseng!

1Department of Physics, NTNU, Trondheim

Abstract

Audio-reactive disco lights, powered by Fast Fourier Transform (FFT) analysis of microphone signals, embody
a fusion of technology and art. These lights can enrich sensory experiences through synchronized light
displays. This project utilizes a microcontroller (Arduino Uno), along with the ArduinoFFT and FastLED
libraries, Arduino software, and a custom-made printed circuit board with an bandpass filter with amplification

to achieve the objective.

Introduction

This project aims to use audio data from a microphone
to control the color and number of LEDs active,
mimicking an equalizer. The goal is to do this
through the integration and Arduino Uno with a
custom made printed circuit board that amplifies
and filters the audio signal, and powers the LED
lights. The objective is to dissect the incoming audio
signal via Fast Fourier Transform analysis, providing
an understanding of the frequency components and
manipulating and using it to control the lights. An
ilustration of the concept can be seen in Figure 1.

Figure 1: Audio reactive discolights concept figure.

Theory

Fast Fourier Transform
The Cooley-Tukey Fast Fourier Transform (FFT)
algorithm has opened new possibilities when it
comes to digital signal processing [1]. It reduces
the complexity of crucial computational tasks, like
the Fourier transform (FT). Direct computations of
discrete Fourier transform (DFT) requires on the
order of N? operations, while Cooley-Tukey FFT
brings down the complexity to an order of Nlogs (V)
operations [1].

The general DFT of an N-point signal {z[n],0 <
n < N — 1} is defined as

N-1
X[k =Y Wyt (1)
n=0
where
2 2 .. 27
Wy =el N = cos(ﬁ) —i—jsm(ﬁ) (2)

is the principal N-th rooth of unity [2]. The
radix-2 Decimation In Time (DIT) case of the Cooley
Tukey FFT proceed by division of DFT into two DFTs
of length N /2. The FFT will utilize two properties of
Wh,

Wi =Wy 3)

and

Wk+N/2 _wk ()

Then by considering a N-point signal z[n] of
even length, the DIT radix-2 FFT derivation begins
by splitting equation 1 into two sums [2]. One part
has the even indexed values x[2n], while the other
the odd indexed values x[2n + 1]. Equation 1 can
then be written as

N/2-1 N/2-1
X[k = > z2n)Wy>+ Z 2n+1]Wy, 2Dk
n=0
(5)
or
N/2-1 . Nj2-1
XK= Y woln]Wys+Wity " e Wiy
n=0
(6)
where zo[n] = z[2n] and z1[n] = z[2n + 1].
Leading to the result
X[k] = Xo+ Wy*X, (7)
and
N
X[k + 5] = Xo - Wyhxy, (8)
where Xo = DFTyj{wo[n]} and X; =

DFTyjp{x1[n]}. This result shows the essence of

the radix-2 DIT FFT, expressing the DFT of length

N recursively, utilizing two DFTs of size N/2. This

approach optimizes the speed by efficiently utilizing

intermediate computation results to compute multiple
DFT outputs.

Inverting bandpass filter with amplification

A Dbandpass filter is a circuit crucial in various
electronic applications for its ability to selectively
transmit frequencies within a specific range while
attenuating those outside this range. This section
delves into the fundamental characteristics of the
inverting bandpass filter with amplification described
in section , specifically focusing on the cutoff
frequencies and the amplification of the signal.

An inverting bandpass filter is a filter that offsets
the phase of the signal by 180 degrees [3]. The cutoff
frequencies of the filter can be found individually
from the standard formula for the cutoff frequency
fe, for an RC filter, given by

1
fe=5pe)
Where R is the resistance and C'is the capacitance
of the filter. For the high-pass part of the filter, this
becomes

1
fu= 2rR1Cy
where f7, is the lower cutoff frequency of the filter.

For the low-pass part of the filter, the upper cutoff
frequency is

(10)

1
2T R2 02 '
The amplification of the filter can be calculated
using

fo = (11)

Ry

Ry

where the negative sign indicates that the signal is
inverted [3].

A= (12)

Method

Main Program

Behind the audio-reactive disco lights lies the FFT,
a mathematical algorithm used to analyze signals in
the frequency domain, as presented in the theory.
By applying FFT to the microphone input signals
captured, it was possible to break down the audio
data into its constituent frequencies. This process
allowed for the lights to synchronize and respond to
the frequency and intensity of the music.

By comparing the calculated frequency peaks
to a measurement by the application phyphox, we
confirmed that the frequency by FFT was not far off.

The LED strip was programmed by the FastLED
library. FastLED is a fast, efficient, easy-to-use
Arduino library for programming addressable LED
strips [4]. The amplitude by the microphone signal
decided the number of LEDs reacting to sound, while
the frequency f peaks[0] decided the color of these
LEDs.

Custom PCB
For this project, a custom printed circuit board (PCB)
was made. The PCB was made to fit directly on top
of the Arduino Uno, and included the microphone,
the band pass filter and an MPC3201 analog to digital
converter to convert the filtered microphone signal.
The finished PCB i pictured in Figure 2.

The bandpass filter circuit is depicted in Figure 3.
It is an inverting bandpass filter with amplification,
and is typically used for sound where the offset from

Figure 2: Image of the project setup with a PCB.

the inverting factor doesent matter [3]. The values
for C', Co, Ry and Rp were changed to increase the
amplification of the signal from 20 dB to 30 dB. The
final values are listed in table 1.

Banpass filter with amplification I

Amplification: 10dB 22u
Low cutoff frequency: ~70Hz
High cutoff frequency: ~15kHz R2

[N 5
R3 R4
10k 10k o
c1 UlA
R I'L 2>
1k I 1 OUTPUT
, 0.1n 3]y
LM324AN
o
Electret Mictrophone R6 = ——c4
o DNP RS) 100n
10k
GND GND GND GND

Figure 3: Schematic of the bandpass filter circuit

The low cutoff frequency was chosen to be
150Hz to filter some of the 50Hz noise, and
frequencies that are not typically in music. The high
cutoff frequency was set to 15900 Hz. The cutoff
frequencies were also informed by available resistor
and capacitor values. The filter amplification was set
to 30 dB. This comes from the equations 12, 11, and
10 and the component values in table 1.

Table 1: Final component values for bandpass filter

Component Value Unit
(& 10 uk
Ry 100 Q

Co 100 pF
Rs 100 59]

The analog to digital converter on the PCB
was used to sample the audio signal at a higher
resolution and frequency than what was possible
with the internal ADC on the arduino uno. It has
a resolution of 12bit, compeared to the Arduino
Uno’s internal 10 bit ADC improving the resolution
of the measured audio. The ADC uses a 3 wire SPI
protocol to communicate with the arduino through
the dedicated hardware SPI pins on the arduino.

Discussion

The primary challenge with audio-reactive lights lies
in effectively sampling sound while simultaneously
manipulating the lights. Sampling sound halt the
rest of the program, preventing the lights from
reacting to sound signals in real-time. Moreover,
the inclusion of the built-in wait() function in
Arduino makes this issue worse further delaying
the light response. To address this challenge, we
developed a custom function for time management
and scheduling sound sampling, and light control,
allowing for seamless synchronization between audio
input and light manipulation. Ideally, the program
for audio-reactive lights should perform both sound
sampling and light manipulation concurrently, but
this is not possible with our setup.

PCB

There were several issues with the PCB. Firstly the
formulas for the lower and upper cutoff frequencies
given in [3] are swapped, so the planned values
for the circuit board were wrong. Secondly, the
Vin voltage input for the board that was designed
to power both the arduino and the LED strip was
connected to the Vin port on the arduino and the
Vin of the LED strip. Theese require different
voltages, with the arduino taking 7 — 12V, while the
LED strip having a max rated voltage of 5V. This was
solved by removing the Vin header pin connecting
the PCB to the arduino, and jumping it to the 5V
pin to power it through there instead. This is not a
recommended solution as the 5V pin on the arduino
offers no protection.

It also turned out that the arduino uses pin 0 and
pin 1 to upload new programs. Theese pins were
routed to the CS and MISO pins of the external ADC,
meaning the arduino could not be programed with
the shield on. This was fixed by again removing
the header pins connecting the PCB to the arduino
and soldering jumper wires from those pins to other
unused pins on the PCB. It was however still not

possible to program the arduino with the PCB on,
which was traced to the 100nF’ capacitor connected
to the reset button being too big, so it was soldered
off.

After this the PCB worked well and gave sensible
audio readings, but the signal was still a little weak,
so the R; resistor and C capacitor was swapped to
amplify the signal more and to readjust the low cutoff
frequency. The ADC worked well for sampling the
signal, a plot of the raw audio data from the ADC
can be seen in Figure 4. The LED strip pinout was
also incorrect compared to the connector on the LED
strip, and the connectors did not fit each other so the
connector on the LED strip had to be changed for a
nanofit connector.

Figure 4: Plot of filtered and amplified audio data recorded
using the PCB

Program
Despite prioritizing speed, ArduinoFFT maintains a

balance between accuracy and computational efficiency,

making it a valuable tool for FFT analysis on
Arduino platforms. However, one should be mindful
of memory constraints, especially on boards with
limited resources. This meant that the data buffer
used in the FFT computation was very small at only
64 samples which gave inaccuracies in estimating
the peak frequency. While ArduinoFFT offers
performance improvements compared to traditional
FT, its effectiveness may be limited by memory
limitations, particularly for sample sizes exceeding
the board’s capacity.

It was also difficult to translate the calculated
peak frequency into a good color palate. In the end
the frequency was mapped to a hue value between 0
and 360 degrees, which yielded good enough results.
The number of active LEDs was controlled by the
amplitude of the signal. The number of active LEDs
were directly mapped to the typical range of the
signal, which meant some LEDs were never used.
More work could be done to improve the colors of the
LED strip and the animation of turning on and off the

active LEDs. It still worked well as a proof of concept,
and gave a good visualization of the recorded audio
signal even though it didn’t mimic an equaliser as
originally planned.

Testing of the program was done mostly on a
breadboard assembly of the circuit while the PCB
was being developed and fixed. This meant that in
the end when the software was used together with
the PCB, some issues with the FFT and control of
the LED strip arose that could not be fixed in time.
The PCB should have been prioritised earlier to allow
time to fix the issues and test it beforehand.

Conclusion

The design, soldering and fixing of the PCB took
longer than expected, and should have been prioritised
earlier in the project. This in turn affected the
software implementation, which couldn’t be tested
with the final assembly in time, and therefore didn’t
work.

The program itself worked fairly well during
testing, and gave a good visualization of the audio
signal, even though it didnt mimic an equalizer as
originally planned. More work should generally
have been done on the final aesthetics of the project
to sell the idea better.

We learned a lot about the FFT algorithm and
PCB design in this project. And while it didn’t
work in the end, we are happy with the project and
everything we have learned from it.

References

[1] Duhamel P, Vetterli M. Fast fourier transforms:
A tutorial review and a state of the art. Signal
Processing. 1990;19(4):259-99. Available from:
https://www.sciencedirect.com/science/article/pii/
016516849090158U.

[2] Selesnick I. The Fast Fourier Transform (FFT) NYU.
2012. Available from: https://eeweb.engineering.nyu.
edu/iselesni/EL713/zoom/fft.

filter

calculator.
http://www.

[3] Electronics LA. Bandpass
2018. Available from:
learningaboutelectronics.com/Articles/
Bandpass-filter-calculator.php.

[4] Gracia D, Kriegsman M. FastLED. 2012. Available
from: https://fastled.io/.

https://www.sciencedirect.com/science/article/pii/016516849090158U
https://www.sciencedirect.com/science/article/pii/016516849090158U
https://eeweb.engineering.nyu.edu/iselesni/EL713/zoom/fft
https://eeweb.engineering.nyu.edu/iselesni/EL713/zoom/fft
http://www.learningaboutelectronics.com/Articles/Bandpass-filter-calculator.php
http://www.learningaboutelectronics.com/Articles/Bandpass-filter-calculator.php
http://www.learningaboutelectronics.com/Articles/Bandpass-filter-calculator.php
https://fastled.io/

Appendix
PCB schematic

2 1
Resetbutton
RESET
o i c2
Banpass filter with amplification]l
D 1T
Amplification: 1008 22
Low cutoff frequency: ~70Hz
High cutoff frequency: ~15kHz R2
Arduino connectors
100k
N b v
User button
R3
10k USR BTN
UIA
1 e o
GND 1 T 1 OUTPUT
B 0.n
LM324AN
Electret Mictrophone R6
@® & DNP RS
10k
i User LED
GND GND GND GND LED3
S
UsR LED _ R7 '\
- 1k | 41
1500605575000
5VPWRLED
61300811121
LEDL
5V
8 N RS 7
7__IORE! Power connector
1k
RESET 3V3 ADC 150060SS75000 =
Tsv 3V3PWRLED GND
B T w2 vin a1 Leo2
outeur 2 [\ pouT |6 Miso 1
e 2 3v3 o
Vin . R
= s 5] =g = Nanofit2pir ®
1300811121 oD EK 7o GISHON GND 1500608575000 =
GND
7 s L VREF
A { 8 LED strip connector
o B VDD vss =
& MCP3201-CI/SN = Vin
P GND Ps
. N 4
o
@[LOUTPU o] g 5
1300611121 o —
~
61300411121
A
GND
4 3

Figure 5: Schematic of the PCB

	Introduction
	Theory
	Fast Fourier Transform
	Inverting bandpass filter with amplification

	Method
	Main Program
	Custom PCB

	Discussion
	PCB
	Program

	Conclusion
	PCB schematic

