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Abstract
Audio-reactive disco lights, powered by Fast Fourier Transform (FFT) analysis of microphone signals, embody
a fusion of technology and art. These lights can enrich sensory experiences through synchronized light
displays. This project utilizes a microcontroller (Arduino Uno), along with the ArduinoFFT and FastLED
libraries, Arduino software, and a custom-made printed circuit boardwith an bandpass filterwith amplification
to achieve the objective.

Introduction
This project aims to use audio data from amicrophone
to control the color and number of LEDs active,
mimicking an equalizer. The goal is to do this
through the integration and Arduino Uno with a
custom made printed circuit board that amplifies
and filters the audio signal, and powers the LED
lights. The objective is to dissect the incoming audio
signal via Fast Fourier Transform analysis, providing
an understanding of the frequency components and
manipulating and using it to control the lights. An
ilustration of the concept can be seen in Figure 1.

Figure 1: Audio reactive discolights concept figure.

Theory
Fast Fourier Transform
The Cooley-Tukey Fast Fourier Transform (FFT)
algorithm has opened new possibilities when it
comes to digital signal processing [1]. It reduces
the complexity of crucial computational tasks, like
the Fourier transform (FT). Direct computations of
discrete Fourier transform (DFT) requires on the
order of N2 operations, while Cooley-Tukey FFT
brings down the complexity to an order ofNlog2(N)
operations [1].

The general DFT of an N-point signal {x[n], 0 ≤
n ≤ N − 1} is defined as

X[k] =
N−1∑
n=0

x[n]W−kn
N (1)

where

WN = ej
2π
N = cos(

2π

N
) + jsin(

2π

N
) (2)

is the principal N-th rooth of unity [2]. The
radix-2 Decimation In Time (DIT) case of the Cooley
Tukey FFT proceed by division of DFT into two DFTs
of lengthN/2. The FFT will utilize two properties of
WN ,

W 2
N = WN/2 (3)
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and

W
k+N/2
N = −W k

N . (4)

Then by considering a N -point signal x[n] of
even length, the DIT radix-2 FFT derivation begins
by splitting equation 1 into two sums [2]. One part
has the even indexed values x[2n], while the other
the odd indexed values x[2n + 1]. Equation 1 can
then be written as

X[k] =

N/2−1∑
n=0

x[2n]W−2nk
N +

N/2−1∑
n=0

x[2n+1]W
−(2n+1)k
N

(5)
or

X[k] =

N/2−1∑
n=0

x0[n]W
−nk
N/2 +W−k

N

∑̇N/2−1

n=0
x1[n]W

−nk
N/2

(6)
where x0[n] = x[2n] and x1[n] = x[2n + 1].

Leading to the result

X[k] = X0 +W−k
N X1 (7)

and

X[k +
N

2
] = X0 −W−k

N X1, (8)

where X0 = DFTN/2{x0[n]} and X1 =
DFTN/2{x1[n]}. This result shows the essence of
the radix-2 DIT FFT, expressing the DFT of length
N recursively, utilizing two DFTs of size N/2. This
approach optimizes the speed by efficiently utilizing
intermediate computation results to computemultiple
DFT outputs.

Inverting bandpass filter with amplification
A bandpass filter is a circuit crucial in various
electronic applications for its ability to selectively
transmit frequencies within a specific range while
attenuating those outside this range. This section
delves into the fundamental characteristics of the
inverting bandpass filterwith amplification described
in section , specifically focusing on the cutoff
frequencies and the amplification of the signal.

An inverting bandpass filter is a filter that offsets
the phase of the signal by 180 degrees [3]. The cutoff
frequencies of the filter can be found individually
from the standard formula for the cutoff frequency
fc, for an RC filter, given by

fc =
1

2πRC
. (9)

WhereR is the resistance andC is the capacitance
of the filter. For the high-pass part of the filter, this
becomes

fL =
1

2πR1C1
(10)

where fL is the lower cutoff frequency of the filter.
For the low-pass part of the filter, the upper cutoff
frequency is

fH =
1

2πR2C2
. (11)

The amplification of the filter can be calculated
using

A = −R1

R2
(12)

where the negative sign indicates that the signal is
inverted [3].

Method
Main Program
Behind the audio-reactive disco lights lies the FFT,
a mathematical algorithm used to analyze signals in
the frequency domain, as presented in the theory.
By applying FFT to the microphone input signals
captured, it was possible to break down the audio
data into its constituent frequencies. This process
allowed for the lights to synchronize and respond to
the frequency and intensity of the music.

By comparing the calculated frequency peaks
to a measurement by the application phyphox, we
confirmed that the frequency by FFT was not far off.

The LED strip was programmed by the FastLED
library. FastLED is a fast, efficient, easy-to-use
Arduino library for programming addressable LED
strips [4]. The amplitude by the microphone signal
decided the number of LEDs reacting to sound, while
the frequency f_peaks[0] decided the color of these
LEDs.

Custom PCB
For this project, a custom printed circuit board (PCB)
was made. The PCB was made to fit directly on top
of the Arduino Uno, and included the microphone,
the band pass filter and anMPC3201 analog to digital
converter to convert the filtered microphone signal.
The finished PCB i pictured in Figure 2.

The bandpass filter circuit is depicted in Figure 3.
It is an inverting bandpass filter with amplification,
and is typically used for sound where the offset from
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Figure 2: Image of the project setup with a PCB.

the inverting factor doesent matter [3]. The values
for C1, C2, R1 and R2 were changed to increase the
amplification of the signal from 20 dB to 30 dB. The
final values are listed in table 1.

Figure 3: Schematic of the bandpass filter circuit

The low cutoff frequency was chosen to be
150Hz to filter some of the 50Hz noise, and
frequencies that are not typically in music. The high
cutoff frequency was set to 15 900Hz. The cutoff
frequencies were also informed by available resistor
and capacitor values. The filter amplification was set
to 30 dB. This comes from the equations 12, 11, and
10 and the component values in table 1.

Table 1: Final component values for bandpass filter

Component Value Unit
C1 10 µF
R1 100 Ω
C2 100 pF
R2 100 kΩ

The analog to digital converter on the PCB
was used to sample the audio signal at a higher
resolution and frequency than what was possible
with the internal ADC on the arduino uno. It has
a resolution of 12 bit, compeared to the Arduino
Uno’s internal 10 bit ADC improving the resolution
of the measured audio. The ADC uses a 3 wire SPI
protocol to communicate with the arduino through
the dedicated hardware SPI pins on the arduino.

Discussion
The primary challenge with audio-reactive lights lies
in effectively sampling sound while simultaneously
manipulating the lights. Sampling sound halt the
rest of the program, preventing the lights from
reacting to sound signals in real-time. Moreover,
the inclusion of the built-in wait() function in
Arduino makes this issue worse further delaying
the light response. To address this challenge, we
developed a custom function for time management
and scheduling sound sampling, and light control,
allowing for seamless synchronization between audio
input and light manipulation. Ideally, the program
for audio-reactive lights should perform both sound
sampling and light manipulation concurrently, but
this is not possible with our setup.

PCB
There were several issues with the PCB. Firstly the
formulas for the lower and upper cutoff frequencies
given in [3] are swapped, so the planned values
for the circuit board were wrong. Secondly, the
V in voltage input for the board that was designed
to power both the arduino and the LED strip was
connected to the V in port on the arduino and the
V in of the LED strip. Theese require different
voltages, with the arduino taking 7−12V , while the
LED strip having amax rated voltage of 5V . Thiswas
solved by removing the V in header pin connecting
the PCB to the arduino, and jumping it to the 5V
pin to power it through there instead. This is not a
recommended solution as the 5V pin on the arduino
offers no protection.

It also turned out that the arduino uses pin 0 and
pin 1 to upload new programs. Theese pins were
routed to the CS and MISO pins of the external ADC,
meaning the arduino could not be programed with
the shield on. This was fixed by again removing
the header pins connecting the PCB to the arduino
and soldering jumper wires from those pins to other
unused pins on the PCB. It was however still not

3



:

possible to program the arduino with the PCB on,
which was traced to the 100nF capacitor connected
to the reset button being too big, so it was soldered
off.

After this the PCBworked well and gave sensible
audio readings, but the signal was still a little weak,
so the R1 resistor and C1 capacitor was swapped to
amplify the signalmore and to readjust the low cutoff
frequency. The ADC worked well for sampling the
signal, a plot of the raw audio data from the ADC
can be seen in Figure 4. The LED strip pinout was
also incorrect compared to the connector on the LED
strip, and the connectors did not fit each other so the
connector on the LED strip had to be changed for a
nanofit connector.

Figure 4: Plot of filtered and amplified audio data recorded
using the PCB

Program
Despite prioritizing speed, ArduinoFFT maintains a
balance between accuracy and computational efficiency,
making it a valuable tool for FFT analysis on
Arduino platforms. However, one should be mindful
of memory constraints, especially on boards with
limited resources. This meant that the data buffer
used in the FFT computation was very small at only
64 samples which gave inaccuracies in estimating
the peak frequency. While ArduinoFFT offers
performance improvements compared to traditional
FT, its effectiveness may be limited by memory
limitations, particularly for sample sizes exceeding
the board’s capacity.

It was also difficult to translate the calculated
peak frequency into a good color palate. In the end
the frequency was mapped to a hue value between 0
and 360 degrees, which yielded good enough results.
The number of active LEDs was controlled by the
amplitude of the signal. The number of active LEDs
were directly mapped to the typical range of the
signal, which meant some LEDs were never used.
Morework could be done to improve the colors of the
LED strip and the animation of turning on and off the

active LEDs. It still workedwell as a proof of concept,
and gave a good visualization of the recorded audio
signal even though it didn’t mimic an equaliser as
originally planned.

Testing of the program was done mostly on a
breadboard assembly of the circuit while the PCB
was being developed and fixed. This meant that in
the end when the software was used together with
the PCB, some issues with the FFT and control of
the LED strip arose that could not be fixed in time.
The PCB should have been prioritised earlier to allow
time to fix the issues and test it beforehand.

Conclusion
The design, soldering and fixing of the PCB took
longer than expected, and should have been prioritised
earlier in the project. This in turn affected the
software implementation, which couldn’t be tested
with the final assembly in time, and therefore didn’t
work.

The program itself worked fairly well during
testing, and gave a good visualization of the audio
signal, even though it didnt mimic an equalizer as
originally planned. More work should generally
have been done on the final aesthetics of the project
to sell the idea better.

We learned a lot about the FFT algorithm and
PCB design in this project. And while it didn’t
work in the end, we are happy with the project and
everything we have learned from it.
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Appendix
PCB schematic
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Figure 5: Schematic of the PCB
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